Abstract

We theoretically investigate the electric transport in the pseudogap state of High-Tc cuprates. Starting from the repulsive Hubbard model, we perform the microscopic calculation to describe the pseudogap phenomena which are induced by the superconducting fluctuations. The single particle Green function, spin susceptibility and superconducting fluctuations are self-consistently determined by the SC-FLEX+T-matrix approximation. The longitudinal and transverse conductivities are calculated by using the Eliashberg and Kohno-Yamada formalism. The effects of the spin fluctuations and superconducting fluctuations are estimated, respectively. The vertex corrections arising from the two fluctuations are also calculated. The additional contribution from the Aslamazov-Larkin term is also estimated beyond the Eliashberg formalism. It is shown that the main effect of the superconducting fluctuations is the feedback effect through the spin fluctuations. The correct results are obtained by considering the superconducting fluctuations and the spin fluctuations simultaneously. The temperature and doping dependences of the resistivity and the Hall coefficient are well explained. We point out that the characteristic momentum dependence of the systems plays an essential role in this explanation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.