Abstract

AbstractExact algorithms for the calculation of melting curves of heterogeneous DNA with N base pairs apparently require computer time proportional to N2. However, it is shown that a decomposition of the loop entropy factor into a sum of I exponential functions (1) gives an extremely accurate approximation to the loop entropy factor for small values of I and (2) makes the computer time for the exact algorithms proportional to I·N. In effect, exact results for melting curves and lengths of helix or coil stretches are obtained with computer time comparable to that required for the Frank‐Kamenetskii approximation. The remarkable accuracy of the latter for the fraction of helical content (errors of 0.01–0.05) is confirmed, but appreciably larger errors are found for the lengths of helix or coil stretches (typical errors of 30–100%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.