Abstract

AbstractWe present a local equilibrium theory for the reactive transport of two salts that share an anion in an ideal solution. We revisit this classic problem using the theory of hyperbolic partial differential equations accounting for the volume of precipitates. We construct analytical solutions for the 2 × 2 system of conservation laws in the absence of hydrodynamic dispersion. The character of the system depends on the saturation of the salts, that is, whether the fluid is saturated with both, either of the two or none of the salts. We provide a comprehensive analysis of the system and its solution. Each primitive variable, the amount of precipitate and the concentration of ions, remains constant along one class of waves that propagate in the system. The analysis of the system allows identification of seven bifurcations with respect to the intermediate state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.