Abstract

A lattice-dynamical treatment of displacive phase transitions leads naturally to the softmode model, in which the phase-transition mechanism involves a phonon frequency that falls to zero at the transition temperature. The basic ideas of this approach are reviewed in relation to displacive phase transitions in silicates. A simple free-energy model is used to demonstrate that Landau theory gives a good approximation to the free energy of the transition, provided that the entropy is primarily produced by the phonons rather than any configurational disorder. The rigid unit mode model provides a physical link between the theory and the chemical bonds in silicates and this allows us to understand the origin of the transition temperature and also validates the application of the soft-mode model. The model is also used to reappraise the nature of the structures of high-temperature phases. Several issues that remain open, such as the origin of first-order phase transitions and the thermodynamics of pressure-induced phase transitions, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.