Abstract

Gradient microstructure design has been found to be an effective approach to significantly produce the utmost advanced structural metallic materials, which have a signature in mechanical characteristic of strength-ductility-hardenability combination. In this work, a physical theory and mechanism-based numerical model are developed for sophisticatedly designing the gradient microstructured metals. It considers the gradient distribution of grain size, twin, martensite and austenite in a metallic alloy. The numerical results are validated through experiments. The mechanical performance of high strength, large ductility and considerable hardenability is achieved and their trade-off is successfully overcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.