Abstract

A theory of correlation effects in dusty plasmas based on a suitably augmented Debye Huckel approximation is proposed. A model which takes into account the confinement of the dust within the plasma (by external fields) is considered. The dispersion relation of compressional modes with correlation effects is obtained. Results show that strong coupling effects may be subdominant even when Г ≫ 1. Thus, in the limit Γ→0 and/or κ → ∞, one obtains the weakly coupled dust thermal mode. In the range of values of Г ≫ 1, the strong coupling effects scale with κ instead of Г; increasing Г increases the dust acoustic waves phase velocity CDAW in this regime. In the limit Γ≫1,κ≪1, one obtains the weakly coupled dust acoustic wave. Only in the limit Γ≫1,κ≥1, one obtains strong coupling effects, e.g., the dust lattice waves (κ=a/λd, a is the mean particle distance and λd is the Debye length). Observations from a number of experiments are explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.