Abstract
We consider the dynamic nuclear spin polarization (DNP) using two electrons in a double quantum dot in presence of external magnetic field and spin-orbit interaction, in various schemes of periodically repeated sweeps through the S-T+ avoided crossing. By treating the problem semi-classically, we find that generally the DNP have two distinct contributions - a geometrical polarization and a dynamic polarization, which have different dependence on the control parameters such as the sweep rates and waiting times in each period. Both terms show non-trivial dependence on those control parameter. We find that even for small spin-orbit term, the dynamical polarization dominates the DNP in presence of a long waiting period near the S-T+ avoided crossing, of the order of the nuclear Larmor precession periods. A detailed numerical analysis of a specific control regime can explain the oscillations observed by Foletti et.~al.~in arXiv:0801.3613.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.