Abstract

Chiral liquid crystals often exhibit periodic modulations in the molecular director; in particular, thin films of the smectic-C* phase show a chiral striped texture. Here, we investigate whether similar chiral modulations can occur in the induced molecular tilt of the smectic-A phase under an applied electric field. Using both continuum elastic theory and lattice simulations, we find that the state of uniform induced tilt can become unstable when the system approaches the smectic-A-smectic-C* transition or when a high electric field is applied. Beyond that instability point, the system develops chiral stripes in the tilt, which induce corresponding ripples in the smectic layers. The modulation persists up to an upper critical electric field and then disappears. Furthermore, even in the uniform state, the system shows chiral fluctuations, including both incipient chiral stripes and localized chiral vortices. We compare these predictions with observed chiral modulations and fluctuations in smectic-A liquid crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.