Abstract
Fundamental principles for theoretical understanding and elucidation of structure and reactivity of iron-sulfur (Fe-S) Fe n S m (n, m=2∼8) clusters are investigated and elucidated on the theoretical and experimental grounds. To this end, the nature of chemical bonds of these clusters is investigated by three methods; (1) the spin Hamiltonian model for analysis of EPR results, (2) broken-symmetry (BS) hybrid density functional theory (HDFT) methods for full geometry optimisations and elucidations of complete active spaces (CAS) for one-electron transfers reactions and (3) beyond HDFT methods such as CAS configuration interaction (CI) and MR CI for high precision energy calculations on classical and quantum computers. Theoretical concepts revealed are applied for elucidation of the mechanism of nitrogen fixation with FeMoco (Fe7MoS9C) cluster, indicating an important role of proton-coupled (PC) one electron spin transfer (OEST) processes instead of radical reaction mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.