Abstract

We extend the quasi-particle renormalized perturbation theory developed in our previous work [Y.-W. Chang and B.-Y. Jin, J. Chem. Phys. 141, 064111 (2014)] based on nonequilibrium Green's function techniques to study the effects of electron correlation on the charge transport process in molecular junctions. In this formalism, the single-impurity Anderson's model is used as the zeroth-order Hamiltonian of each channel orbital, and the inter-channel interactions are treated by perturbation corrections. Within this scheme, the on-channel Coulomb repulsion and the single-particle spectral line-broadening can be incorporated in the zeroth-order approximation, and thus the Coulomb blockade and coherent tunneling through individual channels can be described properly. Beyond the zeroth-order description, electron correlation can be included through the self-energy corrections in the forms of the second-Born approximation and the GW approximation. The effects of electron correlation on molecular junctions are manifested as the orbital energy correction, correlated transport process, and collisional line-broadening. As an application, we have applied the present formalism to phenyl-based molecular junctions described by the Pariser-Parr-Pople Hamiltonian. The signatures of electron correlation in the simulated current-voltage curves are identified and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.