Abstract

Recent experimental studies have determined that carbon doping dramatically improves the photocatalytic activity of TiO2 in the visible-light region. Using density functional theory (DFT) calculations within the generalized gradient corrected approximation, we investigate various structural models of carbon impurities in both the anatase and rutile polymorphs of TiO2 and analyze the associated modifications of the electronic band structure. We compare the stability of all these diverse species on the basis of their energy of formation as a function of the oxygen chemical potential, which determines whether the system is in an oxidizing or reducing environment. At low carbon concentrations, we find that, under oxygen-poor conditions, substitutional (to oxygen) carbon and oxygen vacancies are favored, whereas, under oxygen-rich conditions, interstitial and substitutional (to Ti) C atoms are preferred. Higher carbon concentrations undergo an unexpected stabilization caused by multidoping effects, interpreted...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.