Abstract

We present a theoretical description of Bernstein modes that arise as a result of the coupling between plasmonlike collective excitations (upper-hybrid mode) and inter-Landau-level excitations, in graphene in a perpendicular magnetic field. These modes, which are apparent as avoided level crossings in the spectral function obtained in the random-phase approximation, are described to great accuracy in a phenomenological model. Bernstein modes, which may be measured in inelastic light-scattering experiments or in photoconductivity spectroscopy, are a manifestation of the Coulomb interaction between the electrons and may be used for a high-precision measurement of the upper-hybrid mode at small nonzero wave vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.