Abstract

A numerical procedure for the evaluation of the Bessoid canonical integral J({x,y}) is described. J({x,y}) is defined, for x and y real, by eq1 where J0() is a Bessel function of order zero. J({x,y}) plays an important role in the description of cusped focusing when there is axial symmetry present. It arises in the diffraction theory of aberrations, in the design of optical instruments and of highly directional microwave antennas and in the theory of image formation for high-resolution electron microscopes. The numerical procedure replaces the integration path along the real t axis with a more convenient contour in the complex t plane, thereby rendering the oscillatory integrand more amenable to numerical quadrature. The computations use a modified version of the CUSPINT computer code (Kirk et al 2000 Comput. Phys. Commun. at press), which evaluates the cuspoid canonical integrals and their first-order partial derivatives. Plots and tables of J({x,y}) and its zeros are presented for the grid -8.0≤x≤8.0 and -8.0≤y≤8.0. Some useful series expansions of J({x,y}) are also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.