Abstract
The atmospheric turbulence is the main factor that influences quantum properties of propagating optical signals and may sufficiently degrade the performance of quantum communication protocols. The probability distribution of transmittance (PDT) for free-space channels is the main characteristics of the atmospheric links. Applying the law of total probability, we derive the PDT by separating the contributions from turbulence-induced beam wandering and beam-spot distortions. As a result, the obtained PDT varies from log-negative Weibull to truncated log-normal distributions depending on the channel characteristics. Moreover, we show that the method allows one to consistently describe beam tracking, a procedure which is typically used in practical long-distance free-space quantum communication. We analyze the security of decoy-state quantum key exchange through the turbulent atmosphere and show that beam tracking does not always improves quantum communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.