Abstract

We study the nonequilibrium transport for the asymmetric and negative differential magnon tunneling driven by temperature bias. We demonstrate that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential spin Seebeck effects in magnon tunneling junctions. When magnonic junctions have temperature-dependent density of states, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing magnonic spin current. We show that these properties are relevant for building spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in magnonics and spin caloritronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call