Abstract
Theory of analytic functions is one of major fields of modern mathematics. Its application covers broad range of topics of natural science. A complex function f (z), or a function that takes a complex number z as a variable, has various properties that often differ from those of functions that take a real number x as a variable. In particular, the analytic functions hold a paramount position in the complex analysis. In this chapter we explore various features of the analytic functions accordingly. From a practical point of view, the theory of analytic functions is very frequently utilized for the calculation of real definite integrals. For this reason, we describe the related topics together with tangible examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.