Abstract

We present the theory of a truly microscopic maser consisting of a single-mode high-Q resonator in which a monoenergetic beam of excited two-level atoms is injected at such a low flux that at most one atom at a time is present inside the cavity. Both a microscopic theory and a heuristic Fokker-Planck approach are presented. We show that the micromaser exhibits a number of novel features that are averaged out in usual masers and lasers. First, the field is in general sub-Poissonian, which reflects the quantization of both the field and its sources. Second, the onset of maser oscillations may be followed by a succession of abrupt transitions in the state of the field. Finally, as the atomic flux through the resonator is increased, the maser threshold acquires characteristics of a continuous phase transition, whereas the subsequent changes in the field distribution become analogous to first-order phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.