Abstract
High resolution X-ray photoelectron spectra of a series of substituted pyridines (pyridine, 2-fluoropyridine, and 2,6-difluoropyridine) have been recorded and rationalized by means of a quantum mechanical approach based on the density functional theory including vibronic effects at the Franck-Condon level. The significant chemical shifts of the C1s binding energies induced by fluorine atoms are reproduced quantitatively by our computational model, as well as the vibrational fine structure and the band shapes. Nonsymmetric normal modes play an important role due to the core-hole localization in the presence of equivalent carbon atoms in pyridine and 2,6-difluoropyridine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.