Abstract

A novel approach for damage characterization through machine learning is presented where theoretical knowledge of failure and strain-softening is linked to the macroscopic response of quasi-isotropic composite laminates in over-height compact tension tests. A highly efficient continuum damage finite element model enables the training of a system of interconnected Neural Networks (NNs) in series solely based on the macroscopic load-displacement data. Using experimental results, the trained NNs predict suitable damage parameters for progressive damage modeling of IM7/8552 composite laminates. The predicted damage properties are validated successfully using experimental measurements obtained through cumbersome non-destructive data analysis. The proposed strategy demonstrates the effectiveness of machine learning to reduce experimental efforts for damage characterization in composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call