Abstract

The use of theory-based knowledge in machine learning models has a major impact on many engineering and physics problems. The growth of deep learning algorithms is closely related to an increasing demand for data that is not acceptable or available in many use cases. In this context, the incorporation of physical knowledge or a priori constraints has proven beneficial in many tasks. On the other hand, this collection of approaches is context-specific, and it is difficult to generalize them to new problems. In this paper, we experimentally compare some of the most commonly used theory-injection strategies to perform a systematic analysis of their advantages. Selected state-of-the-art algorithms were reproduced for different use cases to evaluate their effectiveness with smaller training data and to discuss how the underlined strategies can fit into new application contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.