Abstract

Rigorous kinematical analysis offers a general representation of displacement variation through thickness of multilayered plates, which allows discontinuous distribution of displacements across each interface of adjacent layers so as to provide the possibility of incorporating effects of interfacial imperfection. A spring-layer model, which has recently been used efficiently in the field of micromechanics of composites, is introduced to model imperfectly bonded interfaces of multilayered plates. A linear theory underlying dynamic response of multilayered anisotropic plates with nonuniformly weakened bonding is presented from Hamilton’s principle. This theory has the same advantages as conventional higher-order theories over classical and first-order theories. Moreover, the conditions of imposing traction continuity and displacement jump across each interface are used in modeling interphase properties. In the special case of vanishing interface parameters, this theory reduces to the recently well-developed zigzag theory. As an example, a closed-form solution is presented and some numerical results are plotted to illustrate effects of the interfacial weakness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.