Abstract

The fundamental transport theory for ion mobility spectrometry is modified to include effects of space charge. The new theory is then applied to describing the performance of "inverse ion mobility spectrometry" recently reported in Tabrizchi, M.; Jazan, E. Anal. Chem. 2010, 82, 746-750 using a discharge ionization source. The improved separation capabilities arise from space charge repulsion of the greater number of ions that are introduced into the drift tube by the technique. A larger effective diffusion coefficient and additional displacement velocities for the leading and trailing edges of the ion mobility peak account for the results. Performance is compared to conventional linear ion mobility spectrometry, with and without a radioactive source for ionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.