Abstract

A generalized theoretical model of intensity modulated photocurrent spectroscopy (IMPS) for the random morphology in a dye sensitized solar cell (DSSC) under uniform illumination is developed. The generalized IMPS expression for the disordered semiconducting/conducting glass interface of a DSSC is obtained in term of power spectral density of roughness. Influence of surface roughness on the dynamic response of DSSC originate due to the coupling of characteristic phenomenological and morphological length scales. A detailed analysis of IMPS response is performed over finite self- affine fractals to highlight roughness induced anomalies and cause of photocurrent enhancement. The IMPS of a rough DSSC exhibit three characteristic frequency regimes: lifetime of charge carrier dependent low frequency regime, surface irregularity dependent intermediate power-law regime and diffusion controlled high frequency regime. Finally, our theory facilitates the understanding of dynamics and kinetics of charge carriers under the influence of ubiquitous surface disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.