Abstract

Herein, we utilized molecular dynamic (MD) simulations using LAMMPS software and selecting Tersoff and Lennard-Jones potentials to design and investigate mechanical properties of (8,8), (9,9), (10,10), and (11,11) single-walled and (8,8)@(11,11) double-walled silicon-germanium (SiGe) armchair nanopeapods. The number of encapsulated fullerenes and the working temperature were changed as variables to evaluate the mechanical properties. The larger nanopeapods had lower Young's modulus and failure strain, but, surprisingly enough, no significant variation was found in failure strain values by increasing the number of Si30Ge30 cages and the temperature (300-900K). Overall, higher mechanical properties were the case for double-walled SiGe nanopeapods and that the more the number of encapsulated cages, the lower the mechanical properties whatever the nanopeapod. Amazingly, fullerenes remained undamaged even after the SiGe nanopeapods ruptured. Thus, thermally/mechanically stable nanopeapods developed theoretically herein can be considered potential super-carriers for drug and gene encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.