Abstract

High Harmonic Generation (HHG), which has been widely used in atomic gas, has recently expanded to solids as a means to study highly nonlinear electronic response in condensed matter and produce coherent high frequency radiation with new properties. Most recently, attention has turned to Topological Materials (TMs) and the use of HHG to characterize topological bands and invariants. Theoretical interpretation of nonlinear electronic response in TMs, however, presents many challenges. In particular, the Bloch wavefunction phase of TMs has undefined points in the Brillouin Zone. This leads to singularities in calculating the inter-band and intra-band transition dipole matrix elements of Semiconductor Bloch Equations (SBEs). Here, we use the laser-electromagnetic velocity gauge ${\boldsymbol p}\cdot {\bf A}(t)$ to numerically integrate the SBEs and treat the singularity in the production of the electrical currents and HHG spectra. We use a prototype of Chern Insulators (CIs), the Haldane model, to demonstrate our approach. We find good qualitative agreement of the velocity gauge compared to the length gauge and the Time-Dependent Density Functional theory in the case of topologically trivial materials such as MoS$_2$. For velocity gauge and length gauge, our two-band Haldane model reproduces key HHG spectra features: ($\textit i$) The selection rules for linear and circular light drivers, ($\textit ii$) The linear cut-off law scaling and ($\textit iii$) The anomalous circular dichroism. We conclude that the velocity-gauge approach captures experimental observations and provides theoretical tools to investigate topological materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.