Abstract
Psychological theories of habit posit that when a strong habit is formed through behavioral repetition, it can trigger behavior automatically in the same environment. Given the reciprocal relationship between habit and behavior, changing lifestyle behaviors is largely a task of breaking old habits and creating new and healthy ones. Thus, representing users’ habit strengths can be very useful for behavior change support systems, for example, to predict behavior or to decide when an intervention reaches its intended effect. However, habit strength is not directly observable and existing self-report measures are taxing for users. In this paper, building on recent computational models of habit formation, we propose a method to enable intelligent systems to compute habit strength based on observable behavior. The hypothesized advantage of using computed habit strength for behavior prediction was tested using data from two intervention studies on dental behavior change (N = 36 and N = 75), where we instructed participants to brush their teeth twice a day for three weeks and monitored their behaviors using accelerometers. The results showed that for the task of predicting future brushing behavior, the theory-based model that computed habit strength achieved an accuracy of 68.6% (Study 1) and 76.1% (Study 2), which outperformed the model that relied on self-reported behavioral determinants but showed no advantage over models that relied on past behavior. We discuss the implications of our results for research on behavior change support systems and habit formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.