Abstract

The effect of non-Boltzmann energy distributions on the free propagation of shock waves through a monoatomic gas is investigated via theory and simulation. First, the non-Boltzmann heat capacity ratio γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma $$\\end{document}, as a key property for describing shock waves, is derived from first principles via microcanonical integration. Second, atomistic molecular dynamics simulations resembling a shock tube setup are used to test the theory. The presented theory provides heat capacity ratios ranging from the well-known γ=5/3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma = 5/3$$\\end{document} for Boltzmann energy-distributed gas to γ→1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\gamma \\rightarrow 1$$\\end{document} for delta energy-distributed gas. The molecular dynamics simulations of Boltzmann and non-Boltzmann driven gases suggest that the shock wave propagates about 9% slower through the non-Boltzmann driven gas, while the contact wave appears to be about 4% faster if it trails non-Boltzmann driven gas. The observed slowdown of the shock wave through applying a non-Boltzmann energy distribution was found to be consistent with the classical shock wave equations when applying the non-Boltzmann heat capacity ratio. These fundamental findings provide insights into the behavior of non-Boltzmann gases and might help to improve the understanding of gas dynamical phenomena.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call