Abstract
The theory of nuclear spin relaxation in a liquid permeating a solid structure of irregular geometry is examined. The effects of restricted diffusion and the demagnetizing field generated by an inhomogeneous distribution of magnetic susceptibility in the system are explored. A framework comprising Brownian Dynamics, average Hamiltonian theory, and Liouville-space spin dynamics is proposed for simulating nuclear spin relaxation in 3D models of random structures obtained from CT scans of actual samples. Simulations results are compared with experimental data. An analytical solution valid within approximation is also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.