Abstract
A new model for a multi-layer thermoacoustic transducer that takes full advantage of the excellent the thermoacoustic characteristics of carbon nanotube (CNT) thin film is developed. Analytical exact solutions of acoustic pressure distribution for both near and far fields are presented with engineering interpretation. By assuming acoustically transparent stacking layers and a total thickness less than a tenth of the sound wavelength, the acoustic pressure field relations between parallel layers are established that subsequently yield the sound pressure for the overall stacking films. A comparison between theoretical prediction and experiment for single-layer and multi-layer CNT thin films is presented and excellent agreement is reported. Key influencing factors including the total layer number, and the spacing between separated films and gas medium on the sound pressures level (SPL) are investigated and discussed in detail. Some design criteria that increases the SPL of the multi-layer CNT thin film transducer are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.