Abstract
This paper presents influence diagnostics for simultaneous equations models. It proposes residuals, leverage and other influence measures. A missing data method is adopted to minimize the masking effect due to case deletions. The assessment of local influence is also considered. The paper shows how to evaluate the effects that perturbations to the endogenous variables, predetermined variables and case weights may have on the parameter estimates. The diagnostics are illustrated with two examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australian & New Zealand Journal of Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.