Abstract

Abstract A numerical procedure for solving the time-dependent, incompressible Navier-Stokes equations is derived based on the operator-splitting technique. This operator split allows separate operations on each of the variable fields to enable pressure-velocity coupling. Discretizations of the equations are formed on a nonstaggered finite element mesh and the solutions are obtained in a time-marching fashion. Several benchmark problems, including a standing vortex problem, a lid-driven cavity and a flow around a rectangular cylinder, are studied to demonstrate the robustness and accuracy of the present algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.