Abstract
This paper explores cantilevered beam flutter for both clamped and pinned leading edge boundary conditions. Specifically, a three-dimensional vortex lattice panel method is coupled with a classical Lagrangian one-dimensional beam structural model to predict the linear flutter boundary for finite size rectangular plates. The paper explores the change in flutter characteristics as a function of the fluid to structure mass ratio and the structural aspect ratio. The paper also presents an exploration of the non-monotonic transition in flutter velocity between the pinned-free and clamped-free boundary conditions which is modeled using a leading edge torsional spring. The theoretical results are compared to vibration and aeroelastic test results collected in the Duke University wind tunnel as well as previous theoretical and experimental results for the leading edge clamped configuration. The aeroelastic experiments confirmed the validity of the three-dimensional vortex lattice aerodynamic model over a subset of mass ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.