Abstract

This paper presents octave-tunable resonators and filters with surface mounted lumped tuning elements. Detailed theoretical analysis and modeling in terms of tuning range and unloaded quality factor (Qu) are presented in agreement with simulated and measured results. Based on the models, a systematic design method to maximize tuning ratio and optimize Qu of the resonator is suggested. A resonator tuning from 0.5 to 1.1 GHz with Qu ranging from 90 to 214 is demonstrated using solid-state varactors. A two-pole filter with a tuning range of 0.5-1.1 GHz with a constant 3-dB fractional bandwidth (FBW) of 4±0.1% and insertion loss of 1.67 dB at 1.1 GHz is demonstrated along with a three-pole filter with a tuning range of 0.58-1.22 GHz with a constant 3-dB FBW of 4±0.2% and insertion loss of 2.05 dB at 1.22 GHz. The measured input third-order intermodulation is better than 17 dBm over the frequency range for the two-pole filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call