Abstract

Thermoelectrochemistry (TEC) is a subject that combines the theories and techniques of both thermoand electro-chemistry to investigate the cell and electrode reactions [1]. That is, the parameters of thermodynamics [2-4] and kinetics [5] of the electrochemical reactions can be obtained by the simultaneous measurements and analysis of heat flow, electrode potential, electric current and time signals under the various conditions. Therefore, TEC can provide the availably and expansively additional information more for electrochemical reactions. It compensates the insufficiency for a single electrochemical study or a single thermochemical research to some extent. In earlier period, a lot of techniques and instruments used to research the heat effects of cell and half-cell was set up [6-30], such as thermoelectric power measurements [6,7], electrolytic calorimeter [8], controlled-potential and controlled-current polarizations [9], Kinetic method on the stationary heat effect [10], non-stationary temperature wave method [11], cyclic-voltammo-thermometry[12], Lumped-heat-capacity analysis [13], steady state electrolysis [14], differential voltammetric scanning thermometry [15], acoustic calorimetry[16], thermistor probe determination[17], potentiodynamic and galvanostatic transient techniques [18], non-isothermal cell [19], etc to obtain the electrochemical Peltier heat (EPH) of the electrode reactions. In these researches, a mainly purpose is to acquire EPHs of cell or half-cell reactions. The EPH could be considered as a basic issue of TEC. Before the identification of this problem there had been two puzzled questions, one is that the heat effects for a reversible reaction, Q can be calculated by the formula Q = TS where S is the entropy change of this reaction and T temperature in Kelvin. However, this formula that is valid for most reactions is not viable at least for a reversible single electrode reaction in aqueous solution. For a reversible single electrode reaction, the experimental value of the heat effect is not in agreement with that calculated on the current thermodynamic databank of ions, that is, with which, the product of the calculated entropy change and the temperature of the electrode reaction always differs from the experimental measurements [2]. For example, for the electrode reaction at the standard state:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call