Abstract
In 1957 Farrell demonstrated how cost inefficiency could be decomposed into two mutually exclusive and exhaustive components: technical and allocative inefficiency. This result is consequence of the fact that—as shown by Shephard—the cost function and the input distance function (the reciprocal of Farrell's technical efficiency measure) are ‘dual’ to each other. Similarly, the revenue function and the output distance function are dual providing the basis for the decomposition of revenue inefficiency into technical and allocative components (see for example, Fare, Grosskopf and Lovell (1994)). Here we extend those results to include the directional distance function and its dual, the profit function. This provides the basis for defining and decomposing profit efficiency. As we show, the output and input distance functions (reciprocals of Farrell efficiency measures) are special cases of the directional distance function. We also show how to use the directional distance function as a tool for measuring capacity utilization using DEA type techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.