Abstract
We study the problem of classification when only a dissimilarity function between objects is accessible. That is, data samples are represented not by feature vectors but in terms of their pairwise dissimilarities. We establish sufficient conditions for dissimilarity functions to allow building accurate classifiers. The theory immediately suggests a learning paradigm: construct an ensemble of simple classifiers, each depending on a pair of examples; then find a convex combination of them to achieve a large margin. We next develop a practical algorithm referred to as dissimilarity-based boosting (DBoost) for learning with dissimilarity functions under theoretical guidance. Experiments on a variety of databases demonstrate that the DBoost algorithm is promising for several dissimilarity measures widely used in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.