Abstract

For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

Highlights

  • Walking aids have been a research hot point for several years [1]

  • Most of humancarrying walking chair robots for the elderly and the lower limb disabled are implemented by selecting serial mechanism as leg mechanism [5,6,7,8,9], such as the I-Foot robot, the Hubo FX-1 robot, and the Hyperion4 robot

  • The 2-UPS+UP parallel leg mechanism (PLM) of the human-carrying walking chair robot is discussed in detail

Read more

Summary

Introduction

Walking aids have been a research hot point for several years [1]. The human-carrying walking chair robot, which is one of walking aids, could help the elderly and the lower limb disabled walk freely in the outside and navigate on uneven ground. The human-carrying walking chair robot, which is different from the wheeled robot and the ordinary legged robot, needs to steadily walk by using leg mechanism as supporting point [2, 3], and needs to bear weight from itself and different passengers [4] These put forward higher requirements for performance of the leg mechanism of the walking chair robot. The numerical method, namely, the reachable workspace of the leg mechanism, is obtained by analyzing the constraint relationship and inverse position kinematics of the mechanism [16,17,18,19]. The 2-UPS+UP parallel leg mechanism (PLM) of the human-carrying walking chair robot is discussed in detail. In optimal workspace, the compound position control strategy is verified by using circular trajectory with the radius 100 mm

Design of the Whole Mechanism
Position Analysis of the Leg Mechanism
Velocity Analysis of the Leg Mechanism
Workspace Analysis
Experiment Research of the Leg Mechanism
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call