Abstract

In adaptive cluster sampling the size of the final sample is random, thus creating design problems. To get round this, Brown (1994) and Brown & Manly (1998) proposed a modification of the method, placing a restriction on the size of the sample, and using standard but biased estimators for estimating the population mean. But in this paper a new unbiased estimator and an unbiased variance estimator are proposed, based on estimators proposed by Murthy (1957) and extended to sequential and adaptive sampling designs by Salehi & Seber (2001). The paper also considers a restricted version of the adaptive scheme of Salehi & Seber (1997a) in which the networks are selected without replacement, and obtains unbiased estimators. The method is demonstrated by a simple example. Using simulation from this example, the new estimators are shown to compare very favourably with the standard biased estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.