Abstract
This paper discusses visualization methods for discriminant analysis. It does not address numerical methods for classification per se, but rather focuses on graphical methods that can be viewed as pre‐processors, aiding the analyst's understanding of the data and the choice of a final classifier. The methods are adaptations of recent results in dimension reduction for regression, including sliced inverse regression and sliced average variance estimation. A permutation test is suggested as a means of determining dimension, and examples are given throughout the discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australian & New Zealand Journal of Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.