Abstract

This paper proposes an adaptive estimator that is more precise than the ordinary least squares estimator if the distribution of random errors is skewed or has long tails. The adaptive estimates are computed using a weighted least squares approach with weights based on the lengths of the tails of the distribution of residuals. Smaller weights are assigned to those observations that have residuals in the tails of long‐tailed distributions and larger weights are assigned to observations having residuals in the tails of short‐tailed distributions. Monte Carlo methods are used to compare the performance of the proposed estimator and the performance of the ordinary least squares estimator. The estimates that were studied in this simulation include the difference between the means of two populations, the mean of a symmetric distribution, and the slope of a regression line. The adaptive estimators are shown to have lower mean squared errors than those for the ordinary least squares estimators for short‐tailed, long‐tailed, and skewed distributions, provided the sample size is at least 20. The ordinary least squares estimator has slightly lower mean squared error for normally distributed errors. The adaptive estimator is recommended for general use for studies having sample sizes of at least 20 observations unless the random errors are known to be normally distributed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.