Abstract

Long span bridges are one of the most challenging types of structures in civil engineering. Wind loading and wind effects are highly important aspects when designing this typology. The interaction between wind and structure, studied by using aeroelasticity theory, allows for the understanding of several classes of structural instabilities that may appear. Also, wind tunnel data, obtained by conducting careful testing of reduced models of bridges, produce useful information about prototypes' characteristics. A fundamental aspect of bridge design under aeroelastic constraints is identification of aerodynamic forces: several models for this purpose are presented in this paper. First, a model based on a 2-degrees-of-freedom plane plate moving in an incompressible fluid is reviewed; this approach, although useful in airfoil engineering, is not valid any longer in civil engineering, as bridge decks are bluff bodies. Second, a linearized theory, also based on a 2-degrees-of-freedom model, is analyzed; in this case, obtaining aerodynamic forces requires identification of a set of coefficients, called flutter derivatives, that can be found by carrying out testing of reduced models of a segment of bridge deck. Finally, an extension of that approach, leading to a linearized theory of a 3-degrees-of-freedom model is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.