Abstract

The massive amount of data and large variety of data distributions in the big data era call for access methods that are efficient in both query processing and index bulk-loading, and over both practical and worst-case workloads. To address this need, we revisit a classic multidimensional access method - the R-tree. We propose a novel R-tree packing strategy that produces R-trees with an asymptotically optimal I/O complexity for window queries in the worst case. Our experiments show that the R-trees produced by the proposed strategy are highly efficient on real and synthetic data of different distributions. The proposed strategy is also simple to parallelize, since it relies only on sorting. We propose a parallel algorithm for R-tree bulk-loading based on the proposed packing strategy, and analyze its performance under the massively parallel communication model. Experimental results confirm the efficiency and scalability of the parallel algorithm over large data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.