Abstract

We create a photoionization model embedded in the turbulent interstellar medium (ISM) by using the state-of-the-art Messenger Monte Carlo MAPPINGS V code (M3) in conjunction with the CMFGEN stellar atmosphere model. We show that the turbulent ISM causes the inhomogeneity of electron temperature and density within the nebula. The fluctuation in the turbulent ISM creates complex ionization structures seen in nearby nebulae. The inhomogeneous density distribution within the nebula creates a significant scatter on the spatially resolved standard optical diagnostic diagrams, which cannot be represented by the spherical constant-density photoionization model. We analyze the dependence of different optical emission lines on the complexity of nebular geometry, finding that the emission lines residing on the nebular boundary are highly sensitive to the complexity of nebular geometry, while the emission lines produced throughout the nebula are sensitive to the density distribution of the ISM within the nebula. Our fractal photoionization model demonstrates that a complex nebular geometry is required for the accurate modeling of H ii regions and emission-line galaxies, especially for the high-redshift galaxies, where the ISM is highly turbulent based on increasing observational evidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.