Abstract

Offset vertical seismic profiling (VSP) theoretical seismograms which include multiples and mode conversions can be computed using a modified “reflectivity” method. In this method, the transformed displacement potentials are first calculated by multiplying the source spectrum by the composite reflectivity function. Integration over wavenumber, followed by inverse Fourier transformation over the frequency range of the signal, yields the synthetic trace. The composite reflectivity function for a buried receiver is derived from Kennett’s matrices (Kennett, 1974, 1979) which are synthesized to form phase‐related reflection and transmission coefficients from a layer stack. Both conventional fixed source‐moving receiver and fixed receiver‐walkaway source (multioffset) VSP geometries can be handled easily. The method can also readily accommodate deviated‐hole VSP. The method is general in that no ray needs to be specified. Because the order of the multiples can be controlled, wraparound problems with the discrete Fourier transform can be avoided. The normal‐incidence VSP seismograms can be rapidly generated as a special case. Several examples illustrate the method. Some classes of laterally varying structures can be approximately handled by restricting the range of ray‐angle integration and by using the principle of superposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.