Abstract

A new technique is proposed that uses theoretical methods to systematically improve the performance of chemical kinetic mechanisms. Using a screening method, the chemical reaction steps that most strongly influence a given kinetic observable are identified. The associated rate coefficients are then improved by high-level quantum chemistry and transition-state-theory calculations, which leads to new values for the coefficients and smaller uncertainty ranges. This updating process is continued as new reactions emerge as the most important steps in the target observable. The screening process employed is a global sensitivity analysis that involves Monte Carlo sampling of the full N-dimensional uncertainty space of rate coefficients, where N is the number of reaction steps. The method is applied to the methanol combustion mechanism of Li et al. (Int. J. Chem. Kinet. 2007, 39, 109.). It was found that the CH(3)OH + HO(2) and CH(3)OH + O(2) reactions were the most important steps in setting the ignition delay time, and the rate coefficients for these reactions were updated. The ignition time is significantly changed for a broad range of high-concentration methanol/oxygen mixtures in the updated mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.