Abstract

To investigate the influence of the Morin transition on the photoelectrochemical (PEC) activity of hematite, electronic properties in different magnetic phases were studied on the basis of the first-principles calculations within the GGA+U approximation. The results show that the effective electron mass in the (0001) plane changes remarkably due to the spin–flop transition, while the effective electron masses in other Miller planes are not sensitive to the spin orientation around irons. The electronic structure calculations of Sn-doped hematite predict that the improved PEC activities of Sn-doped hematite are proved to arise from a shrinking of the band gap, decreasing of the effective electron mass, and thus enhanced electronic conductivity. More interestingly, the heavier doping of Sn (≥16.7 atom %) in hematite would induce a new level between the valence band maximum (VBM) and Fermi level E_F, which facilitates its PEC activity of visible light water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.