Abstract
We present calculations of the electron-positron momentum density for YBa 2Cu 3O 7−δ for δ = 0 and 1 respectively and for an ordered YBa 2Cu 3O 7/YBa 2Cu 3O 6 (100) superlattice, based on first-prindples electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our present results account for the trends observed in the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) of the metallic and insulating compounds, as measured in Geneva. The Lock, Crisp, and West folding is applied in order to emphasize Fermi surface structures. While for δ = 0 the chain related breaks are large, they are predicted to be smaller by a factor of two for δ = 0.5, and to be hardly visible in experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.