Abstract
An oriented piezoelectric film incorporated in the insulator region of a silicon insulated-gated field-effect transistor (FET) results in a sensitive high-frequency strain transducer. Theory governing the transducer properties of the piezoelectric insulator FET transducer is presented. Equations are developed which relate the drain current of the device to induced polarizations of the piezoelectric layer. The highest frequency of surface strains to which the FET transducer can respond is determined by the FET frequency response—ultimately by the channel transit time. This frequency can extend to the GHz range. The low-frequency response to applied strain is determined by the dielectric relaxation frequency of the piezoelectric layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.