Abstract
Some considerations of slender elastic nonperiodic beams are shown in this paper. These beams have a functionally graded structure on the macro-level along the x-axis, and a nonperiodic structure on the micro-level. The effect of the size of the microstructure on the behavior of the beams can play a crucial role. This effect can be taken into account by applying the tolerance modelling method. This method leads to model equations with slowly varying coefficients, some of which depend on the microstructure size. In the framework of this model, formulas of higher order vibration frequencies related to the microstructure can be determined, not only for the fundamental lower-order vibration frequencies. Here, the application of the tolerance modelling method was mainly shown to derive the model equations of the so-called general (extended) tolerance model and standard tolerance model, describing dynamics and stability for axially functionally graded beams with the microstructure. A simple example of free vibrations of such a beam was presented as an application of these models. The formulas of the frequencies were determined using the Ritz method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.