Abstract

Molybdenum phosphide (MoP) has been extensively experimentally shown to possess high and surprisingly increasing hydrodesulfurization (HDS) activities during the HDS process. In order to understand the HDS mechanism, we investigate the HDS of thiophene on clean and single-sulfur-atom-modified MoP(001) using self-consistent periodic density functional theory (DFT). Thiophene strongly prefers flat adsorption, which is slightly weakened in the presence of a surface S atom. Thermodynamic and kinetic analyses of the elementary steps show that the HDS of thiophene takes place along the direct desulfurization (DDS) pathway on both clean and S-modified MoP(001), because of the very low C–S bond activation barriers as well as very high exothermicities involved. More importantly, the surface S atom does not elevate the C–S bond activation barriers but opens a new concerted pathway for the simultaneous rupture of both C–S bonds in thiophene. These results indicate that the presence of a surface S atom could be helpful for thiophene desulfurization. For comparison, we also investigate the influence of a surface S atom on the HDS of thiophene on Pt(111). The results show clearly a negative effect of the surface S atom, in accordance with the lower sulfur resistance of noble metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call